Measures of Compactness Report

Monday, March 21, 2022

Number of cut edges: 5,615

	Reock	Schwartzberg	Alternate Schwartzberg	Polsby- Popper	Population Polygon	Area/Convex Hull	Population Circle	Ehrenburg	Perimeter	Length-Width
Sum	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6,251.20	N/A
Min	0.20	1.47	1.68	0.11	0.42	0.64	0.11	0.21	N/A	1.81
Max	0.64	2.45	2.96	0.35	0.96	0.85	0.71	0.58	N/A	106.98
Mean	0.42	1.94	2.16	0.23	0.73	0.75	0.44	0.36	N/A	37.71
Std. Dev.	0.13	0.31	0.38	0.07	0.14	0.07	0.20	0.10	N/A	36.17

District	Reock	Schwartzberg	Alternate Schwartzberg	Polsby- Popper	Population Polygon	Area/Convex Hull	Population Circle	Ehrenburg	Perimeter	Length-Width
01	0.46	2.30	2.57	0.15	0.69	0.71	0.57	0.35	868.27	36.78
02	0.33	2.02	2.38	0.18	0.75	0.68	0.47	0.39	981.75	86.32
03	0.52	1.59	1.93	0.27	0.96	0.85	0.71	0.43	624.05	43.57
04	0.34	2.45	2.96	0.11	0.56	0.64	0.26	0.21	999.23	70.08
05	0.50	1.73	1.96	0.26	0.75	0.79	0.53	0.33	506.69	36.12
06	0.64	1.47	1.68	0.35	0.84	0.84	0.60	0.58	181.36	4.99
07	0.51	1.68	1.75	0.32	0.73	0.78	0.43	0.47	183.75	8.57
08	0.53	1.87	1.95	0.26	0.75	0.76	0.62	0.29	136.67	1.81
09	0.45	2.06	2.15	0.22	0.73	0.72	0.48	0.31	125.73	7.80
10	0.37	1.90	2.02	0.25	0.66	0.67	0.41	0.32	111.59	1.99
11	0.54	1.68	1.85	0.29	0.86	0.78	0.66	0.47	131.96	7.88

4:57 PM

Measures of Compactness Report

Number of cut edges: 5,615

	Reock	Schwartzberg	Alternate Schwartzberg	Polsby- Popper	Population Polygon	Area/Convex Hull	Population Circle	Ehrenburg	Perimeter	Length-Width
Sum	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6,251.20	N/A
Min	0.20	1.47	1.68	0.11	0.42	0.64	0.11	0.21	N/A	1.81
Max	0.64	2.45	2.96	0.35	0.96	0.85	0.71	0.58	N/A	106.98
Mean	0.42	1.94	2.16	0.23	0.73	0.75	0.44	0.36	N/A	37.71
Std. Dev.	0.13	0.31	0.38	0.07	0.14	0.07	0.20	0.10	N/A	36.17
District	Reock	Schwartzberg	Alternate Schwartzberg	Polsby- Popper	Population Polygon	Area/Convex Hull	Population Circle	Ehrenburg	Perimeter	Length-Width
12	0.24	2.17	2.45	0.17	0.62	0.71	0.19	0.27	266.20	28.28
13	0.29	1.75	1.94	0.27	0.87	0.83	0.12	0.34	499.77	86.72
14	0.20	2.44	2.60	0.15	0.42	0.69	0.11	0.26	634.18	106.98

Measures of Compactness Report

Measures of Compactness Summary

Reock	The measure is always between 0 and 1, with 1 being the most compact.
Schwartzberg	The measure is usually greater than or equal to 1, with 1 being the most compact.
Alternate Schwartzberg	This measure is always greater than or equal to 1, with 1 being the most compact.
Polsby-Popper	The measure is always between 0 and 1, with 1 being the most compact.
Population Polygon	The measure is always between 0 and 1, with 1 being the most compact.
Area / Convex Hull	The measure is always between 0 and 1, with 1 being the most compact.
Population Circle	The measure is always between 0 and 1, with 1 being the most compact.
Ehrenburg	The measure is always between 0 and 1, with 1 being the most compact.
Perimeter	The Perimeter test computes one number for the whole plan. If you are comparing several plans, the plan with the smallest total perimeter is the most compact.
Length-Width Cut Edges	A lower number indicates better length-width compactness. A smaller number implies a more compact plan. The measure should only be used to compare plans defined on the same base layer.